
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE/ACM TRANSACTIONS ON NETWORKING 1

Network Capability in Localizing Node Failures via
End-to-End Path Measurements

Liang Ma, Member, IEEE, Ting He, Senior Member, IEEE, Ananthram Swami, Fellow, IEEE,
Don Towsley, Fellow, IEEE, ACM, and Kin K. Leung, Fellow, IEEE, ACM

Abstract— We investigate the capability of localizing node
failures in communication networks from binary states
(normal/failed) of end-to-end paths. Given a set of nodes of
interest, uniquely localizing failures within this set requires that
different observable path states associate with different node
failure events. However, this condition is difficult to test on large
networks due to the need to enumerate all possible node failures.
Our first contribution is a set of sufficient/necessary conditions
for identifying a bounded number of failures within an arbitrary
node set that can be tested in polynomial time. In addition to
network topology and locations of monitors, our conditions also
incorporate constraints imposed by the probing mechanism used.
We consider three probing mechanisms that differ according
to whether measurement paths are: (i) arbitrarily controllable;
(ii) controllable but cycle-free; or (iii) uncontrollable (deter-
mined by the default routing protocol). Our second contribution
is to quantify the capability of failure localization through:
1) the maximum number of failures (anywhere in the network)
such that failures within a given node set can be uniquely
localized and 2) the largest node set within which failures can
be uniquely localized under a given bound on the total number
of failures. Both measures in 1) and 2) can be converted into
the functions of a per-node property, which can be computed
efficiently based on the above sufficient/necessary conditions.
We demonstrate how measures 1) and 2) proposed for quantifying
failure localization capability can be used to evaluate the impact
of various parameters, including topology, number of monitors,
and probing mechanisms.

Index Terms— Network tomography, failure localization,
identifiability condition, maximum identifiability index.

I. INTRODUCTION

EFFECTIVE monitoring of network performance is essen-
tial for network operators in building reliable communi-

cation networks that are robust to service disruptions. In order
to achieve this goal, the monitoring infrastructure must be
able to detect network misbehaviors (e.g., unusually high
loss/latency, unreachability) and localize the sources of the
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anomaly (e.g., malfunction of certain routers) in an accurate
and timely manner. Knowledge of where problematic network
elements reside in the network is particularly useful for
fast service recovery, e.g., the network operator can migrate
affected services and/or reroute traffic. However, localizing
network elements that cause a service disruption can be chal-
lenging. The straightforward approach of directly monitoring
the health of individual elements (e.g., by collecting topology
update reports) is not always feasible due to the lack of proto-
col interoperability (e.g., in hybrid networks such as cellular-
wireless ad hoc networks), or limited access to network
internal nodes (e.g., in multi-domain networks). Moreover,
built-in monitoring mechanism running on network elements
cannot detect problems caused by misconfigured/unanticipated
interactions between network layers, where end-to-end com-
munication is disrupted but individual network elements
along the path remain functional (i.e., silent failures) [1].
These limitations call for a different approach that can
diagnose the health of network elements from the health of
end-to-end communications perceived between measurement
points.

One such approach, generally known as network tomog-
raphy [2], focuses on inferring internal network character-
istics based on end-to-end performance measurements from
a subset of nodes with monitoring capabilities, referred to
as monitors. Unlike direct measurement, network tomography
only relies on end-to-end performance (e.g., path connectivity)
experienced by data packets, thus addressing issues such
as overhead, lack of protocol support, and silent failures.
In cases where the network characteristic of interest is binary
(e.g., normal or failed), this approach is known as Boolean
network tomography [3].

In this paper, we study an application of Boolean network
tomography to localize node failures from measurements of
path states.1 Under the assumption that a measurement path is
normal if and only if all nodes on this path behave normally,
we formulate the problem as a system of Boolean equations,
where the unknown variables are the binary node states, and
the known constants are the observed states of measurement
paths. The goal of Boolean network tomography is essentially
to solve this system of Boolean equations.

Because the observations are coarse-grained (path nor-
mal/failed), it is usually impossible to uniquely identify node

1This model can also capture link failures by transforming the topology into
a logical topology with each link represented by a virtual node connected to
the nodes incident to the link.
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states from path measurements. For example, if two nodes
always appear together in measurement paths, then upon
observing failures of all these paths, we can at most deduce
that one of these nodes (or both) has failed but cannot deter-
mine which one. Because there are often multiple explanations
for given path failures, existing work mostly focuses on finding
the minimum set of failed nodes that most probably involves
failed nodes. Such an approach, however, does not guarantee
that nodes in this minimum set have failed or that nodes
outside the set have not. Generally, to distinguish between
two possible failure sets, there must exist a measurement path
that traverses one and only one of these two sets. There is,
however, a lack of understanding of what this requires in terms
of observable network properties such as topology, monitor
placement, and measurement routing. On the other hand, even
if there exists ambiguity in failure localization across the entire
network, it is still possible to uniquely localize node failures in
a specific sub-network (e.g., sub-network with a large fraction
of monitors). To determine such unique failure localization
in sub-networks, we need to understand how it is related to
network properties.

In this paper, we consider three closely related problems:
Let S denote a set of nodes of interest (i.e., there can be
ambiguity in determining the states of nodes outside S; how-
ever, the states of nodes in S must be uniquely determinable).
(1) If the number of simultaneous node failures is bounded
by k, then under what conditions can one uniquely localize
failed nodes in S from path measurements available in the
entire network? (2) What is the maximum number of simul-
taneous node failures (i.e., the largest value of k) such that
any failures within S can be uniquely localized? (3) What
is the largest node set within which failures can be uniquely
localized, if the total number of failures is bounded by k?
Answers to questions (2) and (3) together quantify a network’s
capability to localize failures from end-to-end measurements:
question (2) characterizes the scale of failures and question (3)
the scope of localization. Clearly, answers to the above ques-
tions depend on which paths are measurable, which in turn
depends on network topology, placement of monitors, and the
routing mechanism of probes. We will study all these problems
in the context of the following classes of probing mechanisms:
(i) Controllable Arbitrary-path Probing (CAP), where any
measurement path can be set up by monitors, (ii) Controllable
Simple-path Probing (CSP), where any measurement path can
be set up, provided it is cycle-free, and (iii) Uncontrollable
Probing (UP), where measurement paths are determined by the
default routing protocol. These probing mechanisms assume
different levels of control over routing of probing packets and
are feasible in different network scenarios (see Section II-C);
answers to the above three problems under these probing
mechanisms thus provide insights on how the level of control
bestowed on the monitoring system affects its capability in
failure localization.

A. Related Work

Existing work can be broadly classified into single failure
localization and multiple failure localization. Single failure

localization assumes that multiple simultaneous failures
happen with negligible probability. Under this assump-
tion, [4] and [5] propose efficient algorithms for monitor
placement such that any single failure can be detected and
localized. To improve the resolution in characterizing failures,
range tomography in [6] not only localizes the failure, but also
estimates its severity (e.g., congestion level). These works,
however, ignore the fact that multiple failures occur more
frequently than one may imagine [7]. In this paper, we consider
the general case of localizing multiple failures.

Multiple failure localization faces inherent uncertainty. Most
existing works address this uncertainty by attempting to find
the minimum set of network elements whose failures explain
the observed path states. Under the assumption that failures are
low-probability events, this approach generates the most prob-
able failure set among all possibilities. Using this approach,
[8] and [9] propose solutions for networks with tree topolo-
gies, which are later extended to general topologies in [1].
Similarly, [10] proposes to localize link failures by minimizing
false positives; however, it cannot guarantee unique failure
localization. In a Bayesian formulation, [11] proposes a two-
stage solution which first estimates the failure (loss rate above
threshold) probabilities of different links and then infers the
most likely failure set for subsequent measurements. By aug-
menting path measurements with (partially) available control
plane information (e.g., routing messages), [12] and [13]
propose a greedy heuristic for troubleshooting network
unreachability in multi-AS (Autonomous System) networks
that has better accuracy than benchmarks using only path
measurements.

Little is known when we insist on uniquely localizing
network failures. Given a set of monitors known to uniquely
localize failures on paths between themselves, [14] develops
an algorithm to remove redundant monitors such that all
failures remain identifiable. If the number of failed links is
upper bounded by k and the monitors can probe arbitrary
cycles or paths containing cycles, [15] proves that the network
must be (k + 2)-edge-connected to identify any failures up
to k links using one monitor, which is then used to derive
requirements on monitor placement for general topologies.
Solving node failure localization using the results of [15],
however, requires a topology transformation that maps each
node to a link while maintaining adjacency between nodes and
feasibility of measurement paths. To our knowledge, no such
transformation exists whose output satisfies the assumptions
of [15] (undirected graph, measurement paths not contain-
ing repeated links). Later, [16] proves that under a CAP-
like probing mechanism, the condition can be relaxed to
the network being k-edge-connected. Both [15], [16] focus
on placing monitors and constructing measurement paths to
localize a given number of failures; in contrast, we focus
on characterizing the capability of failure localization under
a given monitor placement and constraints on measurement
paths. In previous work [17], we propose efficient testing
conditions and algorithms to quantify the capability of local-
izing node failures in the entire network; however, we did
not consider the case that even if some node states cannot be
uniquely determined, we may still be able to unambiguously
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determine the states of some other nodes. In this paper,
we thus investigate the relationships between the capability of
localizing node failures and explicit network properties such
as topology, placement of monitors, probing mechanism, and
nodes of interest, with focus on developing efficient algorithms
to characterize the capability under given settings.

A related but fundamentally different line of work is graph-
constrained group testing [18], which studies the minimum
number of measurement paths needed to uniquely localize a
given number of (node/link) failures, using a CAP-like probing
mechanism. In contrast, we seek to characterize the type of
failures (number and location) that can be uniquely localized
using a variety of probing mechanisms.

B. Summary of Contributions

We study the fundamental capability of a network with
arbitrarily placed monitors to uniquely localize node fail-
ures from binary end-to-end measurements between monitors.
Our contributions are five-fold:

1) We propose two novel measures to quantify the capability
of failure localization, (i) maximum identifiability index of a
given node set, which characterizes the maximum number of
simultaneous failures such that failures within this set can
be uniquely localized, and (ii) maximum identifiable set for
a given upper bound on the number of simultaneous failures,
which represents the largest node set within which failures can
be uniquely localized if the failure event satisfies the bound.
We show that both measures can be expressed as functions
of per-node maximum identifiability index (i.e., maximum
number of failures such that the failure of a given node can
be uniquely determined).

2) We establish necessary/sufficient conditions for uniquely
localizing failures in a given set under a bound on the total
number of failures, which are applicable to all probing mech-
anisms. We then convert these conditions into more concrete
conditions in terms of network topology and placement of
monitors, under the three different probing mechanisms (CAP,
CSP, and UP), which can be tested in polynomial time.

3) We show that a special relationship between the above
necessary/sufficient conditions leads to tight upper/lower
bounds on the maximum identifiability index of a given set that
narrows its value to at most two consecutive integers. These
conditions also enable a strategy for constructing inner/outer
bounds (i.e., subset/superset) of the maximum identifiable
set. These bounds are polynomial-time computable under
CAP and CSP. While they are NP-hard to compute under UP,
we present a greedy heuristic to compute a pair of relaxed
bounds that frequently coincide with the original bounds in
practice.

4) We evaluate the proposed measures under different prob-
ing mechanisms on random and real topologies. Our evaluation
shows that controllable probing, especially CAP, significantly
improves the capability of node failure localization over
uncontrollable probing. Our result also reveals novel insights
into the distribution of per-node maximum identifiability index
and its relationship with graph-theoretic node properties.

Note: Our results are also applicable to transient failures
as long as node failures persist during probing (i.e., leading

to failures of all traversing paths). We have limited our obser-
vations to binary states (normal/failed) of measurement paths.
It is possible in some networks to obtain extra information
from probes, e.g., rerouted paths after a default path fails,
in which case our solution provides lower bounds on the
capability of localizing failures. Furthermore, we do not make
any assumption on the distribution or correlation of node
failures across the network. In some application scenarios
(e.g., datacenter networks), node failures may be corre-
lated (e.g., all routers sharing the same power/chiller).
We leave the characterization of failure localization in the
presence of such additional information to future work.

The rest of the paper is organized as follows. Section II
formulates the problem. Section III presents the theoretical
foundations for identifying node failures, followed by verifi-
able identifiability conditions for specific classes of probing
mechanisms in Section IV. Based on the derived conditions,
tight bounds on the maximum identifiability index are pre-
sented in Section V, and inner/outer bounds on the maximum
identifiable set are established in Section VI. We evaluate
the established bounds on various synthetic/real topologies in
Section VII to study the impact of various parameters (topol-
ogy, number of monitors, probing mechanism) on the capabil-
ity of node failure localization. Finally, Section VIII concludes
the paper.

II. PROBLEM FORMULATION

A. Models and Assumptions

We assume that the network topology is known and model
it as an undirected graph2 G = (V, L), where V and L are the
sets of nodes and links. In G, the number of neighbors of node
v is called the degree of v; ξ := |L| denotes the number of
links. Note that graph G can represent a logical topology where
each node in G corresponds to a physical subnetwork. Without
loss of generality, we assume G is connected, as different
connected components have to be monitored separately.

A subset of nodes M (M ⊆ V ) are monitors that can initiate
and collect measurements. The rest of the nodes, denoted
by N := V \ M , are non-monitors. Let μ := |M | and
σ := |N | denote the numbers of monitors and non-monitors.
We assume that monitors do not fail during the measurement
process, as failed monitors can be directly detected and
excluded (assuming centralized control within the monitoring
system). Non-monitors, on the other hand, can fail, and a
failure event may involve simultaneous failures of multiple
non-monitors. Depending on the adopted probing mechanism,
monitors measure the states of nodes by sending probes along
certain paths. Let P denote the set of all possible measurement
paths; for given G and M , different probing mechanisms can
lead to different sets of measurement paths, which will be
specified later. We use node state (path state) to refer to the
binary state, failed or normal, of a node (path), where a path
fails if and only if at least one node on the path fails. Table I
summarizes graph-related notations used in this paper.

Let w = (W1, . . . , Wσ)T be the binary column vector of the
states of all non-monitors and c = (C1, . . . , Cγ)T the binary

2We use the terms network and graph interchangeably.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE/ACM TRANSACTIONS ON NETWORKING

TABLE I

GRAPH-RELATED NOTATIONS

column vector (γ = |P |) of the states of all measurement
paths. For both node and path states, 0 represents “normal”
and 1 represents “failed”. We relate the path states to the node
states through the following Boolean linear system:

R � w = c, (1)

where R = (Rij) is a γ × σ measurement matrix, with each
entry Rij ∈ {0, 1} denoting whether non-monitor vj is present
on path Pi (1: yes, 0: no), and “�” is the Boolean matrix
product, i.e., Ci = ∨σ

j=1(Rij ∧ Wj). The goal of Boolean
network tomography is to invert this Boolean linear system
to solve for all/part of the elements in w given R and c.
Intuitively, for a node set S (S ⊆ N ), any node failures in
S are identifiable if and only if the corresponding states of S
in w are uniquely determinable by (1).

B. Definitions

Let a failure set F be a set of non-monitors (F ⊆ N )
that fail simultaneously. Note that the collection of all failure
sets in a given network covers all possible failure scenarios

(each corresponds to a failure set) that can occur in this
network; the goal of failure localization is to infer the current
failure set from the states of measurement paths. The challenge
for this problem is that there may exist multiple failure sets
leading to the same path states, causing ambiguity. Let PF

denote the set of all measurement paths traversing at least
one node in a failure set F . (i.e., PF contains all failed
paths that are caused by node failures in F ). To quantify the
capability of uniquely determining the failure set, we introduce
the following definitions.

Definition 1: Given a network G and a set of measurement
paths P , two failure sets F1 and F2 are distinguishable if and
only if PF1 �= PF2 , i.e., ∃ a path that traverses at least one
node in one set and none of the nodes in the other set.

Definition 1 implies that two potential failure sets must be
associated with different observable path states for monitors
to determine which set of nodes have failed. While uniquely
localizing arbitrary failures requires all subsets of N to be
pairwise distinguishable, we can relax this requirement by only
considering failure sets of size bounded by k (k ≥ 1), which
represents the scale of probable failure events. Moreover,
in practice, we are usually interested in the states of a subset
of nodes S (S ⊆ N ), in which case the goal is to only ensure
unique failure localization within S. Note that failures (F )
may occur anywhere in the network (F ⊆ N ) and are not
restricted to S.

Definition 2: Given a network G (with non-monitor set N )
and a node set S of interest (S ⊆ N ):

1) S is k-identifiable if for any two failure sets F1 and F2

satisfying (1) |Fi| ≤ k (i = 1, 2) and (2) F1∩S �= F2∩S,
F1 and F2 are distinguishable.

2) The maximum identifiability index of S, denoted by
Ω(S), is the maximum value of k such that S
is k-identifiable.

Definition 2 implies that, if a node set S is k-identifiable,
then the states (normal/failed) of all nodes within this set are
unambiguously determinable from the observed path states,
provided the total number of failures (anywhere in the net-
work) is bounded by k. This is because any two failure sets
of cardinality bounded by k that are not distinguishable from
each other implies the same states for nodes in S. The max-
imum identifiability index Ω(S) characterizes the network’s
capability to uniquely localize failures in S. Definition 2
generalizes the notion of network-wide k-identifiability and
maximum identifiability index introduced in [17], where only
the case of S = N was considered. In the special case of
S = {v}, we say that node v is k-identifiable; the maximum
identifiability index of S = {v} is denoted by Ω(v). Note that
the subset of a k-identifiable set is also k-identifiable. We are
therefore interested in the maximum such set.

Definition 3: Given k, the maximum k-identifiable set,
denoted by S∗(k), is the largest-cardinality non-monitor set
that is k-identifiable.

According to Definition 3, it seems that the maximum
k-identifiable set is defined based on its cardinality, and thus
may not be unique. Nevertheless, we prove in Section III-B
that S∗(k) is unique. The significance of the maximum
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k-identifiable set is that it measures the completeness of the
inferred network state: it contains all nodes whose states can
be inferred reliably from the observed path states, as long as
the total number of failures in the network is bounded by k.
Note that k is a design parameter capturing the scale of failures
that the system is designed to handle.

C. Classification of Probing Mechanisms

The above definitions are all defined with respect to (w.r.t.)
a given set of measurement paths P . Given the topology G and
monitor locations M , the probing mechanism plays a crucial
role in determining P . Depending on the flexibility of probing
and the cost of deployment, we classify probing mechanisms
into one of three classes:

1) Controllable Arbitrary-path Probing (CAP): P includes
any path/cycle, allowing repeated nodes/links, provided
each path/cycle starts and ends at (the same or different)
monitors.

2) Controllable Simple-path Probing (CSP): P includes
any simple (i.e., cycle-free) path between different
monitors.

3) Uncontrollable Probing (UP): P is the set of paths
between monitors determined by the routing protocol
used by the network, not controllable by the monitors.

Although CAP allows probes to traverse each node/link an
arbitrary number of times, it suffices to consider paths where
each probe traverses each link at most once in either direction
for the sake of localizing node failures.

These probing mechanisms clearly provide decreasing flex-
ibility to the monitors and therefore decreasing capability to
localize failures. However, they also offer increasing ease
of deployment. CAP represents the most flexible probing
mechanism and provides an upper bound on failure local-
ization capability. In traditional networks, CAP is feasible
at the IP layer if strict source routing [19] is enabled at
all nodes,3 or at the application layer if equivalent “source
routing” is supported by the application. Moreover, CAP is
also feasible under an emerging networking paradigm called
software-defined networking (SDN) [20], [21], where monitors
can instruct the SDN controller to set up arbitrary paths for
the probing traffic.4 In contrast, UP represents the most basic
probing mechanism, feasible in any communication network,
that provides a lower bound on the capability of failure
localization. CSP represents an intermediate case that allows
control over routing while respecting a basic requirement
that routes must be cycle-free. CSP is implementable by
MPLS (MultiProtocol Label Switching), where the “explicit
routing” mode [22] allows one to set up a controllable,

3Source routing allows nodes to modify the source and the destination
addresses in packet headers hop by hop along the path prescribed by a monitor.
The probe can follow the reverse path to return to the original monitor, thus
effectively probing any path with at least one end at a monitor.

4In particular, an SDN consisting of OpenFlow switches [21] can set up
paths by configuring the flow table of each traversed OpenFlow switch to
forward a probing flow (e.g., one TCP connection) to a next hop based on the
ingress port and the flow identifier, which allows the path to have repeated
nodes/links.

Fig. 1. Sample network with three monitors: m1, m2, and m3.

non-shortest path using labels so long as the path is cycle-
free.5 Alternatively, CSP can be implemented by deploying
VPN (Virtual Private Networks) over IP networks, where
the cycle-free property is also required when selecting paths
between VPN end-points [23].

These three probing mechanisms capture the main features
of several existing and emerging routing techniques. Our goal
is to quantify how the flexibility of a probing mechanism
affects the network’s capability to localize failures. Although
concrete results are only provided for the above probing
mechanisms, our framework and the foundation of our results
(see Section III) can also be used to evaluate the failure
localization capabilities of other probing mechanisms.

D. Objective

Given a network topology G, a set of monitors M , and a
probing mechanism (CAP, CSP, or UP), we seek to answer
the following closely related questions: (i) Given a node set
of interest S and a bound k on the number of failures, can
we uniquely localize up to k failed nodes in S from observed
path states? (ii) Given a node set S, what is the maximum
number of failures within S that can be uniquely localized?
(iii) Given an integer k (1 ≤ k ≤ σ), what is the largest node
set that is k-identifiable? We will study these problems from
the perspectives of both theories and efficient algorithms.

E. Illustrative Example

Consider the sample network in Fig. 1 with three mon-
itors (m1–m3) and four non-monitors (v1–v4). Under UP,
suppose that the default routing protocol only allows the
monitors to probe the following paths: P1 = m1v1m2,
P2 = m2v4m3, and P3 = m1v2v4m3, which form a
measurement matrix RUP:

P1 = m1v1m2

P2 = m2v4m3

P3 = m1v2v4m3

� RUP =

W1 W2 W3 W4( )1 0 0 0
0 0 0 1
0 1 0 1

,

(2)

where RUP
ij = 1 if and only if node vj is on path Pi. Then we

have RUP �w = c, where c is the binary vector of path states
observed at the destination monitors. Let S′ := {v1, v2, v4}.
Based on Definition 3, we can verify that Ω(S′) = 2, and the
maximum identifiable set S∗(1) = {v1, v2, v4} and S∗(2) =
S∗(3) = S∗(4) = {v1, v4}. Under CSP, besides the three paths

5Although MPLS can implement paths with cycles using label swapping,
the default loop detection/prevention mechanism in MPLS will prevent data
forwarding on such paths and must be disabled; therefore, it is desirable to
satisfy the cycle-free constraint when constructing paths by MPLS.
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in (2), we can probe three additional paths: P4 = m2v3m3,
P5 = m1v2v3m3, and P6 = m1v2v1m2, yielding an expanded
measurement matrix in (3):

P1 = m1v1m2

P2 = m2v4m3

P3 = m1v2v4m3

P4 = m2v3m3

P5 = m1v2v3m3

P6 = m1v2v1m2

�RCSP =

W1 W2 W3 W4⎛
⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎠

1 0 0 0 }
RUP0 0 0 1

0 1 0 1
0 0 1 0
0 1 1 0
1 1 0 0

(3)

Using the six paths in (3), the maximum identifiability index
of S′ becomes Ω(S′) = 3, and the maximum identifiable set
is enlarged to S∗(1) = S∗(2) = S∗(3) = {v1, v2, v3, v4} and
S∗(4) = {v1, v3, v4}, a notable improvement over UP. Finally,
if CAP is supported, then we can send probes along a cycle
P7 = m1v2m1. In conjunction with the paths in (3), this yields
the measurement matrix in (4):

P1 = m1v1m2

P7 = m1v2m1

P4 = m2v3m3

P2 = m2v4m3

� RCAP =

W1 W2 W3 W4⎛
⎜⎝

⎞
⎟⎠

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

(4)

Since the paths in (4) can independently determine the
state of each non-monitor, we have Ω(S′) = 4 and S∗(1) =
S∗(2) = S∗(3) = S∗(4) = {v1, v2, v3, v4} under CAP, i.e., all
failures can be uniquely localized.

This example shows that the monitor placement and the
probing mechanism significantly affect a network’s capability
to localize failures. In the rest of the paper, we will study this
relationship both theoretically and algorithmically.

III. THEORETICAL FOUNDATIONS

We start with some basic understanding of failure identifi-
ability. First, the definition of k-identifiability in Definition 2
requires enumeration of all possible failure events and thus
cannot be tested efficiently. To address this issue, we establish
explicit sufficient/necessary conditions for k-identifiability that
apply to arbitrary probing mechanisms, which will later be
developed into verifiable conditions for the three classes of
probing mechanisms. Moreover, we establish several desirable
properties of maximum identifiability index (Definition 2)
and maximum identifiable set (Definition 3), which greatly
simplify the computation of these measures.

A. Abstract Identifiability Conditions

Our identifiability condition is inspired by a result known in
a related field called combinatorial group testing [24]. In short,
group testing aims to find abnormal elements in a given set
by running tests on subsets of elements, each test indicating
whether any element in the subset is abnormal. This is
analogous to our problem where abnormal elements are failed
nodes and tests are conducted by probing measurement paths.

A subtle but critical difference is that in our problem, the sub-
sets of elements that can be tested together are constrained by
the set of measurement paths P , which is in turn limited by the
topology, probing mechanism, and placement of monitors.6

Most existing solutions for (nonadaptive) group testing aim
at constructing a disjunct testing matrix. Specifically, a testing
matrix R is a binary matrix, where Ri,j = 1 if and only if
element j is included in the i-th test. Matrix R is k-disjunct
if the Boolean sum of any k columns does not “contain” any
other column7 [25]. In our problem, the existence of a disjunct
testing matrix translates into the following conditions.

Lemma 4:

a) Set S is k-identifiable if for any failure set F with |F | ≤
k and any node v with v ∈ S \ F , ∃ p ∈ P traversing
v but none of the nodes in F .

b) Set S is k-identifiable only if for any failure set F with
|F | ≤ k − 1 and any node v with v ∈ S \ F , ∃ p ∈ P
traversing v but none of the nodes in F .

Proof: Consider two distinct failure sets F1 and F2 with
F1 ∩ S �= F2 ∩ S, each containing no more than k nodes.
There exists a node v ∈ S in only one of these sets; suppose
v ∈ F1 \ F2. By the condition in the lemma, ∃ a path
p traversing v but not F2, thus distinguishing F1 from F2.
Therefore, condition a) in Lemma 4 is sufficient.

Suppose ∃ a non-empty set F with |F | ≤ k−1 and v ∈ S\F
such that all measurement paths traversing v must also traverse
at least one node in F . Therefore, for two failure sets F and
F ∪ {v} satisfying conditions (1–2) in Definition 2-(1) are
not distinguishable as PF = PF∪{v}. Thus, condition b) in
Lemma 4 is necessary.

These conditions generally apply to any probing mecha-
nism. Although in the current form, they do not directly lead
to efficient testing algorithms, we will show later (Section IV)
that they can be transformed into verifiable conditions for
several classes of probing mechanisms.

B. Properties of the Maximum Identifiability Index and the
Maximum Identifiable Set

Although the maximum identifiability index Ω(S) and the
maximum k-identifiable set S∗(k) are defined for sets of
nodes, we show below that they can both be characterized
in terms of a per-node property, which greatly simplifies the
computation of these measures. We start with the following
two observations.

Lemma 5:

a) If S is k-identifiable, then any v ∈ S must be k-
identifiable.

b) If v is k-identifiable ∀v ∈ S, then S is k-identifiable.
Proof: a) Suppose ∃ node v ∈ S that is not k-identifiable,

then ∃ at least two failure sets F1 and F2 with |Fi| ≤ k
(i = {1, 2}) and F1∩{v} �= F2∩{v} such that F1 and F2 are
not distinguishable. Thus, S is not k-identifiable as v ∈ S.

6In this regard, our problem is similar to a variation of group testing under
graph constraints [18]; see Section I-A for the difference.

7That is, for any subset of k column indices S and any other column index
j /∈ S, ∃a row index i such that Ri,j = 1 and Ri,j′ = 0 for all j′ ∈ S.
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b) For any two failure sets F1 and F2 with |Fi| ≤ k (i =
{1, 2}) and F1 ∩S �= F2 ∩S, ∃ a node v ∈ S that is either in
F1 or F2 but not both. Since node v is k-identifiable, F1 and
F2 must be distinguishable. Therefore, S is k-identifiable.

Proposition 6: Ω(S) = minv∈S Ω(v).
Proof: By Lemma 5-(a), any v ∈ S must have

Ω(v) ≥ Ω(S). Thus, minv∈S Ω(v) ≥ Ω(S). By the
definition of maximum identifiability index, all nodes in
S are minv∈S Ω(v)-identifiable. By Lemma 5-(b), S is
also minv∈S Ω(v)-identifiable. Thus, Ω(S) ≥ minv∈S Ω(v).
Therefore, Ω(S) = minv∈S Ω(v).

Corollary 7: Maximum identifiability index of S, Ω(S),
is monotonically non-increasing in the sense that Ω(S1) ≥
Ω(S2) for any two non-empty sets S1 and S2 with S1 ⊂ S2.

Proof: Since S1 ⊂ S2, minv∈S1 Ω(v) ≥ minv∈S2 Ω(v).
Therefore, by Proposition 6, Ω(S1) ≥ Ω(S2).

Therefore, we can estimate the maximum identifiability
index of a given non-monitor set using Corollary 7 when the
maximum identifiability index of its subset/superset is known.

Next, we show that maximum k-identifiable sets exhibit
properties that can facilitate fast determination of which nodes
should be included/excluded in these sets.

Proposition 8: Let S′(k) := {v ∈ N : v is k-identifiable }.
Then S′(k) = S∗(k).

Proof: By Lemma 5-(a), any node in S∗(k) is k-
identifiable. Therefore, S∗(k) ⊆ S′(k).

Next, S′(k) must be k-identifiable according to
Lemma 5-(b). Thus |S′(k)| ≤ |S∗(k)|. Consequently,
S′(k) = S∗(k).

Proposition 8 provides a method to construct the maximum
k-identifiable set S∗(k) by simply collecting all k-identifiable
nodes. Based on this method, we can further prove the
uniqueness and monotonicity of S∗(k) as follows:

Corollary 9: The maximum k-identifiable set S∗(k)
is unique and monotonically non-increasing in k,
i.e., S∗(k + 1) ⊆ S∗(k) for any k.

Proof: Definition 2 implies that k-identifiability is a
per-node property that is independent of the identifiability
of other nodes. Therefore, for each node in N , it is either
k-identifiable or not k-identifiable. By Proposition 8, S∗(k)
is a set containing all k-identifiable nodes; therefore, S∗(k) is
unique.

For each node w ∈ N \ S∗(k), w is not k-identifiable, and
thus w is not (k+1)-identifiable. Since S∗(k+1) is a collection
of all (k + 1)-identifiable nodes, no nodes in N \ S∗(k) can
be included in S∗(k + 1). Thus, S∗(k + 1) ⊆ S∗(k).

Intuitively, if there exists a k-identifiable set S′(k) with
|S′(k)| = |S∗(k)|, then we must have S′(k) = S∗(k).
Thus, Corollary 9 suggests one way to obtain S∗(k) is to
identify S∗(j) for j < k and then only study subsets of
S∗(j); nodes outside S∗(j) are guaranteed to be excluded
from S∗(k).

Corollary 10: Let S′′(k) := {v ∈ N : ∃ path in P
traversing v but none of the nodes in each failure set F with
v /∈ F and |F | ≤ k}. Then S′′(k) ⊆ S∗(k).

Proof: S′′(k) satisfies sufficient condition a) in
Lemma 4. Thus, Ω

(
S′′(k)

) ≥ k. Following similar argu-
ments as in the proof of Proposition 8, again we have that

each node in S′′(k) is at least k-identifiable. Therefore,
S′′(k) ⊆ S∗(k).

By Corollary 10, we note that S′′(k) underestimates the
size of the maximum k-identifiable set S∗(k), yet it forms an
inner bound (i.e., subset) of S∗(k), thus providing theoretical
support for determining the must-have nodes in the optimum
set S∗(k); see detailed discussions presented in Section VI.

Remark: Results in this section apply to any probing mecha-
nism. We will show in the following sections how they can be
used to design efficient algorithms for probing mechanisms
CAP, CSP, and UP. The above results can also be used to
design algorithms for other probing mechanisms.

IV. VERIFIABLE IDENTIFIABILITY CONDITIONS

In this section, starting from the abstract conditions in
Section III-A, we develop concrete conditions suitable for
efficient testing for the three classes of probing mechanisms.

A. Conditions Under CAP

CAP essentially allows us to “ping” any node from a moni-
tor along any path. In the face of failures, this allows a monitor
to determine the state of a node as long as it is connected
to the node after removing other failed nodes. This obser-
vation allows us to translate the conditions in Section III-A
into more concrete identifiability conditions (Lemma 11).

Lemma 11: Set S is k-identifiable under CAP if and only
if for any set V ′ of up to k− 1 non-monitors, each connected
component in G−V ′ that contains a node in S has a monitor.

Proof: Necessity. Suppose the above condition does not
hold, i.e., there exists a non-monitor v (v ∈ S) that is
disconnected from all monitors in G − V ′ for a set V ′ of
up to k − 1 non-monitors (v �∈ V ′). Then if nodes in V ′ fail,
no remaining measurement path can probe v, violating the
condition in Lemma 4-(b).

Sufficiency. The proof is similar to that of [16, Th. 2], except
that we are only interested in localizing failures in S. Consider
two failure sets F1 and F2 with |Fi| ≤ k (i = {1, 2}) and
F1 ∩ S �= F2 ∩ S. Then ∃ node v (v ∈ S) that is in one and
only one of F1 and F2. Without loss of generality, let v ∈ F1.
Let I := F1 ∩ F2. Since |I| ≤ k − 1, ∃ a path p connecting a
monitor m with node v in G−I if the condition in Lemma 11
holds. Let w be the first node on p (starting from m) that is
in either F1 \ I or F2 \ I . Truncating p at w gives a path
p′ such that p′ and its reverse path form a measurement path
from m to w and back to m that traverses only F1 or F2, thus
distinguishing F1 and F2.

Under CAP, Lemma 11 shows that the necessary con-
dition derived from Lemma 4 is also sufficient. However,
the condition in Lemma 11 still cannot be tested efficiently
because a combinatorial number of sets V ′ are enumerated.
Fortunately, we can reduce Lemma 11 into explicit conditions
on vertex-cuts of a related topology, which can then be tested
in polynomial time. We use the following notion from graph
theory.

Definition 12: For two nodes s and t in an undirected
graph G, (s, t)-vertex-cut in G, denoted by CG(s, t), is the
minimum-cardinality node set whose deletion destroys all
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Fig. 2. Auxiliary graphs: (a) Original graph G; (b) G∗ of G; (c) Gmi of G
w.r.t. monitor mi.

paths from s to t. If s and t are neighbors, CG(s, t) :=
V (G) \ {t}.

Our key observation is that requiring each connected com-
ponent in G−V ′ that contains a node in S to have a monitor is
equivalent to requiring each such component in G − M − V ′

(i.e., after removing all monitors) to contain a neighbor of
a monitor. Thus, if we extend G − M by adding a virtual
monitor m′ and virtual links connecting m′ and all neighbors
of monitors to obtain an auxiliary graph G∗ := G − M +
{m′}+L({m′}, N (M)

)
(illustrated in Fig. 2 (b)), then each

node in S \V ′ should be connected to m′ in G∗−V ′. In other
words, the minimum cardinality of the (m′, w)-vertex-cut in
G∗ over all w ∈ S must be greater than |V ′|. For ease of
presentation, we introduce the following definition.

Definition 13: Given a graph G, a node set S, and a node
m /∈ S, define ΓG(S, m) := minw∈S |CG(w, m)|.

By this definition, Lemma 11 can be transformed into a
new condition, which reduces the tests over all possible V ′ to
a single test of the vertex-cuts of G∗, as stated below (recall
that σ is the total number of non-monitors).

Lemma 14: Each connected component in G − V ′ that
contains a node in S has a monitor for any set V ′ of up to q
(q ≤ σ − 1) non-monitors if and only if ΓG∗(S, m′) ≥ q + 1.

Proof: If the first condition holds, then each connected
component in G − M − V ′ that contains a node in S has a
neighbor of a monitor. Since these neighbors are connected
to m′ in G∗ − V ′, each node v with v ∈ S in G∗ − V ′ is
connected to m′. If the first condition is violated, i.e., there
exists a connected component in G − M − V ′ that contains a
node in S has no neighbor of any monitor, then this component
must be disconnected from m′ in G∗ − V ′.

Lemma 14 allows us to rewrite the identifiability conditions
in Lemma 11 in terms of the vertex-cuts of G∗.

Theorem 15 (k-Identifiability Under CAP): Set S is k-
identifiable (k ≤ σ) under CAP if and only if ΓG∗(S, m′) ≥ k.

A special case of Theorem 15 occurs when k = σ, i.e., any
non-monitors can fail simultaneously. In this case, each node
in S must directly connect to at least one monitor in G.

Discussion: Theorem 15 extends and improves the iden-
tifiability condition given in [16, Th. 2] by (i) considering
failures within an arbitrary subset of nodes instead of the entire
network, and (ii) providing a single condition that can be tested
in polynomial time (see testing algorithm below) instead of
testing a combinatorial number of conditions that enumerate
all possible failure sets.

Testing algorithm: A key advantage of the newly derived
condition in Theorem 15 is that it can be tested efficiently

Algorithm 1: Computation of ΓG(S, m)
input : Node set S, node m, graph G (m /∈ S, m∪S ⊆ V (G))
output: Value of ΓG(S, m)

1 ΓG(S, m)← |V (G)|; // "←":assignment operation
2 foreach w ∈ S do
3 reduce the (w, m)-vertex-cut problem (i.e., computation of

CG(w, m)) in undirected graph G to a (w, m)-edge-cut
problem in a directed graph G′ [26];

4 c0 ← size of (w, m)-edge-cut in G′ computed by the
Ford−Fulkerson algorithm [27];

5 if c0 < ΓG(S,m) then
6 ΓG(S, m) = c0;
7 end
8 end

by Algorithm 1. In Algorithm 1, line 3 reduces the vertex-
cut problem to an edge-cut problem in linear time [26].
Then line 4 solves this reduced problem using the
Ford−Fulkerson algorithm [27] in O(θξ) time, where θ :=
|N (M)| denotes the number of non-monitors that are neigh-
bors of at least one monitor in M and ξ is the number of links.
Therefore, we can evaluate ΓG∗(S, m′) in O(θξ|S|) time and
compare the result with k to test the conditions in Theorem 15.

B. Conditions Under CSP

Under CSP, we restrict measurement paths P to the set of
simple paths between monitors, i.e., paths starting/ending at
distinct monitors that contain no cycles. As in CAP, our goal is
again to transform the abstract conditions in Section III-A into
concrete sufficient/necessary conditions that can be efficiently
verified. We first give analogous result to Theorem 15.

Lemma 16 (Under CSP):

a) set S is k-identifiable if for any node set V ′, |V ′| ≤
k + 1, containing at most one monitor, each connected
component in G − V ′ that contains a node in S also
contains a monitor;

b) set S is k-identifiable only if for any node set V ′, |V ′| ≤
k, containing at most one monitor, each connected
component in G − V ′ that contains a node in S also
contains a monitor.

Proof: Suppose condition (a) holds, and consider a
candidate failure set F , |F | ≤ k and a non-monitor v ∈ S \F .
We argue that v must have two simple vertex disjoint paths to
monitors in G−F , and thus concatenating these paths provides
a monitor-monitor simple path that traverses v but not F ,
satisfying the abstract sufficient condition in Lemma 4. Indeed,
if such paths do not exist, i.e., ∃ a (monitor or non-monitor)
node w (w �= v) that resides on all paths from v to monitors
in G − F , then v will be disconnected from all monitors in
G − F − {w}, i.e., the connected component containing v in
G − V ′, where V ′ = F ∪ {w}, has no monitor, contradicting
condition (a).

Suppose condition (b) does not hold, i.e., there exists a non-
monitor v in S, a (monitor or non-monitor) node w, and a
set of up to k − 1 non-monitors F (v �= w and v, w �∈ F )
such that the connected component containing v in G − V ′,
V ′ = F ∪ {w}, contains no monitor. Then any path (if any)
from v to monitors in G−F must traverse w, which means no
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monitor-monitor simple path in G − F will traverse v (as any
monitor-monitor path traversing v must form a cycle at w).
Thus, if node v fails, the failure cannot be identified
in G − F .

Due to the restriction to simple paths, the identifiability
conditions in Lemma 16 are stronger than those in Lemma 11.
As with Lemma 11, the conditions in Lemma 16 do not
directly lead to efficient tests, and we again seek equivalent
conditions in terms of topological properties. Each condition
in the form of Lemma 16 (a–b) covers two cases: (i) V ′ only
contains non-monitors; (ii) V ′ contains a monitor and |V ′|−1
non-monitors. The first case has been converted to a vertex-cut
property on an auxiliary topology G∗ by Lemma 14; we now
establish a similar condition for the second case using similar
arguments.

Fix a set V ′ = F ∪ {m}, where m is a monitor in M
and F a set of non-monitors. Again, the key observation is
that each connected component in G − V ′ that contains a
node in S also containing a monitor is equivalent to each
such component in G − M − F containing a neighbor of
a monitor other than m (i.e., a node in N (M \ {m})).
To capture this observation, we introduce another auxiliary
graph Gm := G −M + {m′}+L({m′}, N (M \ {m})) w.r.t.
monitor m as illustrated in Fig. 2 (c), where m′ is again a
virtual monitor. We will show that the second case (V ′ contains
a monitor) is equivalent to requiring that the nodes in S \ F
and m′ are in the same connected component within Gm −F ,
and thus the following holds.

Lemma 17: The following two conditions are equivalent:

(1) Each connected component in G − V ′ that contains
a node in S also contains a monitor for ∀sets V ′

containing monitor m (m ∈ M ) and up to q (q ≤ σ−1)
non-monitors;

(2) ΓGm(S, m′) ≥ q + 1.
Proof: The proof is similar to that of Lemma 14. If the first

condition holds, then each connected component in G−M−F
for F = V ′ \ {m} contains a node in N (M \ {m}). Thus
each node in S \ V ′ is connected to m′ in Gm − F . If the
first condition is violated, then ∃ a connected component in
G−M−F that contains a node in S does not contain any node
in N (M \ {m}), and thus this component containing nodes
in S \ V ′ must be disconnected from m′ in Gm − F . Hence,
the first condition is equivalent to the second condition.

Based on Lemmas 14 and 17, we can rewrite Lemma 16 as
follows.

Theorem 18 (k-Identifiability Under CSP): Under CSP:

a) set S is k-identifiable if ΓG∗(S, m′) ≥ k + 2, and
minm∈M ΓGm(S, m′) ≥ k + 1 (k ≤ σ − 2);

b) set S is k-identifiable only if ΓG∗(S, m′) ≥ k + 1, and
minm∈M ΓGm(S, m′) ≥ k (k ≤ σ − 1).

Theorem 18 does not include the cases of k = σ and k =
σ − 1, which are addressed in Propositions 19 and 20.

Proposition 19: Set S is σ-identifiable under CSP if and
only if each node in S has at least two monitors as neighbors.

Proof: If each node in S has at least two monitors as
neighbors, then their states can be determined independently
by cycle-free 2-hop probing between monitors, and thus S is

σ-identifiable. On the other hand, suppose ∃ a non-monitor v
in S with zero or only one monitor neighbor. Then � simple
paths going through v without traversing another non-monitor,
and hence the state of v cannot be determined if all the other
non-monitors fail.

Proposition 20: Set S is (σ − 1)-identifiable under CSP if
and only if (i) all nodes in S have at least two monitors as
neighbors, or (ii) all nodes in N \ {v} (v ∈ S) have at least
two monitors as neighbors and v has all nodes in N \ {v}
and one monitor as neighbors.

Proof: Necessity: Suppose that S is (σ − 1)-identifiable
under CSP. If it is also σ-identifiable, then each node in
S must have at least two monitor neighbors according to
Proposition 19. Otherwise, we have Ω(S) = σ − 1. In this
case, ∃ at least one node in S, denoted by v, with at most
one monitor neighbor. Let N (v) denote all neighbors of v
including monitors. Suppose that v has λ neighbors (i.e.,
|N (v)| = λ). Then there are two cases: (i) N (v) contains
a monitor, denoted by m̃; (ii) all nodes in N (v) are non-
monitors. In case (i), the sets F1 = N (v) \ {m̃} and F2 =
F1∪{v} are not distinguishable because � monitor-to-monitor
simple paths traversing v but not nodes in F1. In case (ii),
the sets F1 = N (v) \ {w} (where w is an arbitrary node
in N (v)) and F2 = F1 ∪ {v} are not distinguishable as all
monitor-to-monitor simple paths traversing v must go through
at least one node in F1. Based on (i–ii), we conclude that
Ω(G) ≤ λ − 1, where λ is the degree of any node in S
with at most one monitor neighbor. For Ω(G) = σ − 1,
we must have λ ≥ σ, which can only be satisfied if all such
nodes in S have one monitor and all the other non-monitors
in N as neighbors. Moreover, if there are two such nodes
v and u in S, then the sets F ∪ {v} and F ∪ {u}, where
F = N \ {v, u}, are not distinguishable as all monitor-to-
monitor simple paths traversing v must go through F or u
and vice versa. Therefore, such node, v, in S must be unique.
Now suppose ∃ node z (z ∈ N \ S) which has no or only
one monitor neighbor. Then failure sets F ∪{v} and F ∪{z},
where F = N \ {v, z}, are not distinguishable as Pv = Pz

in G − F . Thus, all nodes in N \ v must have two monitor
neighbors.

Sufficiency: If each node in S has at least two monitor
neighbors, then S is σ-identifiable (hence also (σ − 1)-
identifiable) according to Proposition 19. If condition in
Proposition 20 holds and node v is the only node in S
which has less than two monitor neighbors, then for any two
failure sets F1 and F2 with |Fi| ≤ σ − 1 (i = 1, 2) and
F1 ∩S �= F2 ∩S, there are two cases: (i) F1 and F2 differ on
a non-monitor other than v; (ii) F1 and F2 only differ on v.
In case (i), since the states of all non-monitors other than v can
be independently determined, F1 and F2 are distinguishable.
In case (ii), suppose that F1 = F ∪ {v} and F2 = F for
F ⊆ N \ {v}. Since |F1| ≤ σ − 1, |F | ≤ σ − 2 and ∃ a non-
monitor w ∈ (N \ {v}) \ F . We know that v is a neighbor
of w (as v is a neighbor of all the other non-monitors) and w
is a neighbor of a monitor m other than m̃ (as it has at least
two monitor neighbors). Thus, m̃vwm is a monitor-to-monitor
simple path traversing v but not F , whose measurement can
distinguish F1 and F2, completing the proof.
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Testing algorithm: Similar to CAP, we use Algorithm 1
to compute ΓG∗(S, m′) and ΓGm(S, m′) (∀m ∈ M ), and test
the conditions in Theorem 18 for any given k. The overall
complexity of the test is O(μθξ|S|) (refer to Table I for
notations).

C. Conditions Under UP
Under UP, monitors have no control over the probing paths

between monitors, and the set of measurement paths P is
limited to the paths between monitors determined by the
network’s native routing protocol. In contrast to the previous
cases (CAP, CSP), identifiability under UP can no longer
be characterized in terms of topological properties. We can,
nevertheless, establish explicit conditions based on the abstract
conditions in Section III-A. The idea is to examine how
many non-monitors need to be removed to disconnect all
measurement paths traversing a given non-monitor v. If the
number is sufficiently large (greater than k), then we can still
infer the state of v from some measurement path when a set
of other non-monitors fail; if the number is too small (smaller
than or equal to k− 1), then we are not able to determine the
state of v as the failures of all paths traversing v can already be
explained by the failures of other non-monitors. This intuition
leads to the following results.

In the sequel, Pv ⊆ P denotes the set of measurement
paths traversing a non-monitor v, and Cv := {Pw : w ∈
N, w �= v} denotes the collection of path sets traversing non-
monitors in N \ {v}. We use MSC(v) to denote the size of
the minimum set cover of Pv by Cv, i.e., MSC(v) := |V ′| for
the minimum set V ′ ⊆ N \ {v} such that Pv ⊆ ⋃

w∈V ′ Pw.
Note that covering is only feasible if v is not on any 2-hop
measurement path (i.e., monitor-v-monitor), in which case we
know Pv ⊆ ⋃w∈N,w �=v Pw and thus MSC(v) ≤ σ − 1. If v is
on a 2-hop path, then we define MSC(v) := σ.

Theorem 21 (k-Identifiability Under UP): Under UP with
measurement paths P :

a) set S is k-identifiable if MSC(v) ≥ k + 1 for any node
v in S (k ≤ σ − 1);

b) set S is k-identifiable only if MSC(v) ≥ k for any node
v in S (k ≤ σ).

Proof: Suppose condition (a) holds. Then for any can-
didate failure set F with |F | ≤ k and any node v with
v ∈ S \F , there must be a path in Pv that is not in

⋃
w∈F Pw,

i.e., traversing v but not F , which satisfies Lemma 4.
Suppose condition (b) does not hold, i.e., there exists node

v in S and a set of non-monitors V ′ with |V ′| ≤ k − 1
and v �∈ V ′, such that Pv ⊆ ⋃

w∈V ′ Pw. Then given
failures of all nodes in V ′, the state of v has no impact
on observed path states and is thus unidentifiable, violating
Lemma 4.

The only case not considered by Theorem 21 is the case
that k = σ, for which we develop the following condition.

Proposition 22: Set S is σ-identifiable under
UP if and only if MSC(v) = σ for any node
v in S, i.e., each node in S is on a 2-hop
path.

Proof: Similar to the proof of Proposition 19, if each node
in S is on a 2-hop path, then their states can be determined

Algorithm 2: Computation of GSC(v)
input : Non-monitor set N , non-monitor v, set of

measurement paths P (v ∈ N )
output: Value of GSC(v)

1 V ′ ← N \ {v};
2 if Pv �⊆ PV ′ then
3 GSC(v)← |N |; // v is on a 2-hop path
4 else
5 W ← ∅;
6 while Pv �⊆ PW do
7 u← arg maxz∈V ′ |(Pv \ PW ) ∩ Pz|;
8 W ←W ∪ {u};
9 V ′ ← V ′ \ {u};

10 end
11 GSC(v)← |W |;
12 end

independently, and thus S is σ-identifiable under UP. On the
other hand, suppose ∃ a non-monitor v in S which is not on
any 2-hop paths. Then the state of v cannot be determined if
all the other non-monitors fail.

Testing algorithm: The conditions in Theorem 21 provide
an explicit way to test k-identifiability under UP, using tests
of the form MSC(v) ≥ q. Unfortunately, evaluating such
a test, known as the decision problem of the set cover-
ing problem, is known to be NP-complete. Nevertheless,
we can use approximation algorithms to compute bounds on
MSC(v). An algorithm with the best approximation guarantee
is the greedy algorithm. Let GSC(v) denote the cardinality
of the set selected by the greedy algorithm. Algorithm 2
shows how GSC(v) is computed. This immediately provides
an upper bound: MSC(v) ≤ GSC(v). Moreover, since the
greedy algorithm has an approximation ratio of log(|Pv|) + 1
[28], we can also bound MSC(v) from below: MSC(v) ≥
GSC(v)/(log(|Pv|) + 1). Applying these bounds to Theo-
rem 21 yields relaxed conditions:

• S is k-identifiable under UP if k < �minv∈S
GSC(v)

log(|Pv|)+1�;

• S is not k-identifiable under UP if k > minv∈S GSC(v).
These conditions can be tested by running Algorithm 2 for all
nodes in S, each taking time O(|Pv|2σ) = O(|P |2σ), and the
overall test has a complexity of O(|S||P |2σ) = O(μ4σ|S|) as
there is a measurement path between each pair of monitors.

D. Special Case: 1-Identifiability

In practice, the most common failure event consists of
the failure of a single node. Thus, an interesting question is
whether S is 1-identifiable under a given monitor placement
and a given probing mechanism. In our previous results,
Theorems 18 and 21 only provide an answer to the above
question if the sufficient condition is satisfied or the necessary
condition is violated for k = 1; however, the answer is
unknown if S satisfies the necessary condition but violates
the sufficient condition under CSP and UP. In contrast,
Theorem 15 establishes a condition under CAP that is both
necessary and sufficient, yet still expressed in a complicated
form (i.e., vertex-cuts). We develop explicit methods below
for testing S for 1-identifiability.
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Fig. 3. Extended graph G′.

1) Conditions for 1-Identifiability: We start with a generic
necessary and sufficient condition that applies to all probing
mechanisms. Recall that Pv denotes the set of measurement
paths traversing a non-monitor v. For k = 1, Definition 2-(1)
is equivalent to the following:

Claim 23: S is 1-identifiable if and only if:

(1) Pv �= ∅ for any v ∈ S, and
(2) Pv �= Pw for any v ∈ S, w ∈ N , and v �= w.
In Claim 23, the first condition guarantees that any failure

in S is detectable (i.e., causing at least one path failure), and
the second condition guarantees that the observed path states
can uniquely localize the failed node in S. An efficient test
of these conditions, however, requires different strategies for
different probing mechanisms.

2) Test Under CAP: By Theorem 15, S is 1-identifiable
under CAP if and only if ΓG∗(S, m′) ≥ 1. This is equivalent
to requiring that G∗ be connected, i.e., G has one monitor.

Testing for 1-identifiability of S under CAP is therefore
reduced to determining if the network has a monitor.

3) Test Under CSP: Under CSP, we derive conditions that
are equivalent to those in Claim 23 but easier to test.

Condition (1) in Claim 23 requires that every non-monitor
in S reside on a monitor-monitor simple path. While an
exhaustive search for such a path incurs an exponential cost,
we can test for its existence efficiently using the following
observation. The idea is to construct an extended graph
G′ := G + {m′} + L({m′}, M), i.e., by adding a virtual
monitor m′ and connecting it to all the monitors; see an
illustration in Fig. 3. We claim that a non-monitor v is on
a monitor-monitor simple path if and only if the size of
the (m′, v)-vertex-cut in G′ is at least two, i.e., ΓG′(v, m′) ≥ 2,
which implies the existence (see Definition 12) of two vertex-
independent simple paths between v and m′, illustrated as
paths vm2m

′ and vmim
′ in Fig. 3. Truncating these two

paths at m2 and mi yields two path segments vm2 and vmi,
whose concatenation gives a monitor-to-monitor simple path
traversing v, i.e., m2vmi in Fig. 3. On the other hand, if ∃
a monitor-to-monitor simple path traversing v, then it can
be split into two simple paths connecting v to two distinct
monitors, which implies ΓG′(v, m′) ≥ 2 as each of these two
distinct monitors connects to m′ by a virtual link.

Condition (2) in Claim 23 is violated if and only if there
exist two non-monitors v �= w (at least one of them in S)
such that all monitor-to-monitor simple paths traversing v
must traverse w (i.e., Pv ⊆ Pw) and vice versa. Since
Pv ⊆ Pw means that there is no monitor-to-monitor simple
path traversing v in G − {w}, by the above argument, we see
that Pv ⊆ Pw if and only if the size of the (m′, v)-vertex-cut in
a new graph G′

w := G−{w}+{m′}+L({m′}, M) is smaller

Algorithm 3: Determine the Range of ΓG(v, w)
input : Graph G, nodes v and w in G (v and w are not

neighbors)
output: Relationship between ΓG(v, w) and 2

1 Decompose G into biconnected components [29];
2 if v and w are in the same biconnected component B then
3 ΓG(v, w) ≥ 2;
4 else
5 ΓG(v, w) < 2;
6 end

than two. Therefore, condition (2) in Claim 23 is satisfied if
and only if for every two distinct non-monitors v (v ∈ S) and
w, either the (m′, v)-vertex-cut in G′

w or the (m′, w)-vertex-cut
in G′

v contains two or more nodes.
In summary, the necessary and sufficient condition for

1-identifiability under CSP is:

i) ΓG′(S, m′) ≥ 2, and
ii) ΓG′

w
(v, m′) ≥ 2 or ΓG′

v
(w, m′) ≥ 2 for all v ∈ S,

w ∈ N , and v �= w.

ΓG′(v, m′) ≥ 2 can be tested by Algorithm 3 in O(|V | +
|L|) time as the graph decomposition in line 1 takes O(|V |+
|L|) time [29]. Therefore, the overall complexity for testing
conditions (i–ii) is O(σ|S|(|V | + |L|)) = O(σ(μ + σ)2|S|).

4) Test Under UP: Under UP, the total number of mea-
surement paths |P | is reduced to O(μ2) (from exponentially
many as in the case of CAP/CSP) as the measurable routes
are predetermined. This reduction makes it feasible to directly
test conditions (1–2) in Claim 23 by testing condition (1)
for each node in S and condition (2) for each pair of non-
monitors (one of which is in S). Then the overall complexity
of is O(σμ2|S|), dominated by testing of condition (2) in
Claim 23.

V. CHARACTERIZATION OF MAXIMUM

IDENTIFIABILITY INDEX

By Proposition 6, the maximum identifiability index of a
given set S is the minimum per-node maximum identifiability
index Ω(v) for each node v ∈ S. It thus suffices to characterize
the per-node maximum identifiability index for each probing
mechanism. Under CAP, we give the exact value of Ω(v) based
on the necessary and sufficient condition in Theorem 15; under
CSP and UP, we establish tight upper and lower bounds on
Ω(v) based on the conditions in Theorems 18 and 21.

A. Maximum Identifiability Index Under CAP

Since Theorem 15 provides necessary and sufficient condi-
tions, it directly determines the value of Ω(v), as stated below.

Theorem 24 (Maximum Per-Node Identifiability Under
CAP): The maximum identifiability index of a non-monitor v
under CAP is ΩCAP(v) = ΓG∗(v, m′).

Evaluation algorithm: By Algorithm 1, ΓG∗(v, m′) can be
computed in O(θξ) time (θ: the number of monitor neighbors
in G, ξ: the number of links in G; see Table I). Note that
the input node set for Algorithm 1 only contains a single
node v when computing ΓG∗(v, m′). Therefore, ΩCAP(S) is
computable in O(θξ|S|) time.
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B. Maximum Identifiability Index Under CSP

Observing that both the sufficient and the necessary con-
ditions in Theorem 18 are imposed on the same property,
i.e., vertex-cuts of the auxiliary graph G∗ and Gm. Let
δ∗ := ΓG∗(v, m′), δmin := minm∈M ΓGm(v, m′), and πv :=
min(δmin, δ∗ − 1). We obtain a tight characterization of the
maximum identifiability index under CSP as follows.

Theorem 25 (Maximum Per-Node Identifiability Under
CSP): If πv ≤ σ − 2, the maximum identifiability
index of a non-monitor v under CSP is bounded by
πv − 1 ≤ ΩCSP(v) ≤ πv .

Proof: S = v satisfies the condition in Theorem 18 (a) for
k = πv − 1. Thus, ΩCSP(v) ≥ πv − 1. However, S = v violates
the condition in Theorem 18 (b) for k = πv+1 (which requires
πv + 1 ≤ σ − 1), i.e., ΩCSP(v) �= πv + 1. Thus, ΩCSP(v) ≤ πv.

Remark: Because the set of links in Gm is a subset of those
in G∗ while the nodes are the same, we always have δmin ≤ δ∗.
Therefore, the above bounds simplify to:

• δmin − 2 ≤ ΩCSP(v) ≤ δmin − 1 if δmin = δ∗;
• δmin − 1 ≤ ΩCSP(v) ≤ δmin if δmin < δ∗.

In particular, if δ∗ = 1, then it implies that ∃ a node w ∈ N
in G∗, where all simple paths starting at v and terminating
at m′ must traverse w, i.e., � simple monitor-to-monitor paths
traversing v (Pv = ∅); therefore ΩCSP(v) = 0 (even single-node
failures in S cannot always be localized if v ∈ S).

The only cases when πv ≤ σ− 2 is violated are: (i) δmin =
δ∗ = σ, or (ii) δmin = σ − 1 and δ∗ = σ. In case (i), non-
monitor v still has a monitor as a neighbor after removing m;
by Proposition 19, this implies that ΩCSP(v) = σ. In case (ii),
Theorem 18 (a) can still be applied to show that ΩCSP(S) ≥
σ−2, and one can verify that the condition in Proposition 19
is violated, which implies that ΩCSP(v) ≤ σ−1. In fact, we can
leverage Proposition 20 to uniquely determine ΩCSP(S) in this
case. If the conditions in Proposition 20 are satisfied, then
ΩCSP(v) = σ − 1; otherwise, ΩCSP(v) = σ − 2.

Evaluation algorithm: Evaluating ΩCSP(S) by Proposition 6
involves computing Ω(v) for all v ∈ S, each requiring the
computation of ΓG∗(S, m′) and ΓGm(S, m′) (∀m ∈ M ) using
Algorithm 1, which altogether takes O(μθξ|S|) time.

C. Maximum Identifiability Index Under UP

As in the case of CSP, we can leverage the sufficient and the
necessary conditions in Theorem 21 to bound the maximum
identifiability index under UP from both sides. The conditions
in Theorem 21 imply the following bounds on the maximum
identifiability index under UP.

Theorem 26 (Maximum Per-Node Identifiability Under
UP): The maximum identifiability index of a non-monitor v
under UP with measurement paths P is bounded by MSC(v)−
1 ≤ ΩUP(v) ≤ MSC(v).

Proof: There are two cases for MSC(v): (i) MSC(v) ≤
σ − 1; (ii) MSC(v) = σ. In case (i), v is (MSC(v) −
1)-identifiable by Theorem 21-(a). Meanwhile, v is not
(MSC(v)+1)-identifiable by Theorem 21 (b) (which requires
MSC(v) + 1 ≤ σ when applying Theorem 21-(b)). Together,
they imply the bounds on ΩUP(v). For case (ii), node v is on

a 2-hop measurement path, whose state can be determined
independently; therefore, ΩUP(v) = σ in this case.

Evaluation algorithm: The original bounds in Theorem 26
are hard to evaluate due to the NP-hardness of computing
MSC(·). As in Section IV-C, we resort to Algorithm 2, which
implies the following relaxed bounds:⌈ GSC(v)

log(|Pv|) + 1

⌉
− 1 ≤ ΩUP(v) ≤ GSC(v). (5)

Evaluating the bounds in (5) involves invoking Algorithm 2
for each node in S, with an overall complexity of O(|S||P |2σ)
(or O(μ4σ|S|) if all monitors can probe each other).

VI. CHARACTERIZATION OF THE MAXIMUM

IDENTIFIABLE SET

By Proposition 8, the maximum k-identifiable set S∗(k) is
related to the per-node maximum identifiability index Ω(v) by
S∗(k) = {v ∈ N : Ω(v) ≥ k}. Therefore, S∗(k) can be easily
computed based on values of Ω(v) (v ∈ N ) for any value of k.
Moreover, given upper/lower bounds on Ω(v), i.e., Ωl(v) ≤
Ω(v) ≤ Ωu(v), S∗(k) can be bounded by S inner(k) ⊆ S∗(k) ⊆
Souter(k) for S inner(k) := {v ∈ N : Ωl(v) ≥ k} and Souter(k) :=
{v ∈ N : Ωu(v) ≥ k}. Based on this observation, we now
characterize S∗(k) for each of the three probing mechanisms.

A. Maximum k-Identifiable Set Under CAP

The expression of the maximum per-node identifiability
under CAP in Theorem 24 leads to the following characteri-
zation of the maximum k-identifiable set.

Corollary 27: The maximum k-identifiable set under CAP,
denoted by S∗

CAP(k), is S∗
CAP(k) = {v ∈ N : ΓG∗(v, m′) ≥ k}.

Specifically, when k = σ, S∗
CAP(σ) contains all the non-

monitors directly adjacent to monitors.
Evaluation algorithm: ΓG∗(v, m′) is computable by Algo-

rithm 1 in O(θξ) time. Thus, the total time complexity for
constructing S∗

CAP(k) is O(θξσ).

B. Maximum k-Identifiable Set Under CSP

Leveraging Theorem 25, we can establish outer and inner
bounds (i.e., superset and subset) for the maximum k-
identifiable set under CSP.

Corollary 28: Let Souter
CSP (k) := {v ∈ N : πv ≥ k}, and

S inner
CSP (k) := {v ∈ N : πv ≥ k+1}. The maximum k-identifiable

set under CSP (k ≤ σ − 1), denoted by S∗
CSP(k), is bounded

by S inner
CSP (k) ⊆ S∗

CSP(k) ⊆ Souter
CSP (k).

Proof: For each node q in S inner
CSP (k), ∃ a path traversing q

but none of the nodes in each failure set F with q /∈ F and
|F | ≤ k (k ≤ σ−1). Thus, by Corollary 10, S inner

CSP (k) ⊆ S∗
CSP(k).

On the other hand, all nodes in Souter
CSP (k) are (k−1)-identifiable,

and all nodes in N \ Souter
CSP (k) are at most (k − 1)-identifiable,

i.e., not k-identifiable. Thus, all k-identifiable nodes are within
Souter

CSP (k).
One case not covered by Corollary 28 is k = σ. In this

case, S∗
CSP(σ) contains all non-monitors that have at least two

monitors as neighbors according to Proposition 19. Another
non-covered case is k = σ−1, for which we have the following
result.
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Corollary 29: When k = σ − 1, S∗
CSP(k) = {v ∈ N : v has

at least two monitor neighbors} ∪ S̃. Set S̃ contains one and
only one non-monitor w if all nodes in N but w have at least
two monitor neighbors and w has one monitor and all nodes
in N \ {w} as neighbors; otherwise, S̃ = ∅.

Proof: First, all non-monitors with at least two monitor
neighbors are σ-identifiable, thus included in S∗

CSP(σ − 1). For
node w (if any) in S̃, it satisfies the necessary and sufficient
conditions in Proposition 20, and thus w is (σ−1)-identifiable.
Moreover, by Proposition 20, no nodes outside {v ∈ N : v has
at least two monitor neighbors} ∪ S̃ are (σ − 1)-identifiable.
Therefore, S∗

CSP(σ − 1) = {v ∈ N : v has at least two monitor

neighbors} ∪ S̃.
Corollary 29 implies that when S̃ is not empty

(i.e., |S̃| = 1), then S∗
CSP(σ − 1) = N and S∗

CSP(σ) = N \ S̃
(i.e., |S∗

CSP(σ − 1)| = σ and |S∗
CSP(σ)| = σ − 1).

Evaluation algorithm: Corollary 29 is computable in linear
time, and πv in Corollary 28 can be evaluated by Algorithm 1
in O(μθξ) time. Therefore, the overall complexity is O(μθξσ).

C. Maximum k-Identifiable Set Under UP

Analogous to the case of CSP, we leverage Theorem 26 to
develop the following outer and inner bounds for the maximum
k-identifiable set under UP.

Corollary 30: Let Souter
UP (k) := {v ∈ N : MSC(v) ≥ k} and

S inner
UP (k) := {v ∈ N : MSC(v) ≥ k + 1} with measurement

paths P . The maximum k-identifiable set under UP (k ≤ σ −
1), denoted by S∗

UP(k), is bounded by S inner
UP (k) ⊆ S∗

UP(k) ⊆
Souter

UP (k).
Proof: Similar to the proof for Corollary 28, for each

node q in S inner
UP (k), ∃ a path in P traversing q but none of

the nodes in each failure set F with q /∈ F and |F | ≤ k
(k ≤ σ−1). Thus, by Corollary 10, S inner

UP (k) ⊆ S∗
UP(k). On the

other hand, all nodes in N \ Souter
UP (k) are not k-identifiable.

Thus, all k-identifiable nodes are within Souter
UP (k).

A special case left out by Corollary 30 is k = σ. In this
case, we use Proposition 22 to determine S∗

UP(σ), i.e., S∗
UP(σ) =

{w ∈ N : w is on a 2-hop path}.
Evaluation algorithm: Due to the NP-hardness of com-

puting MSC(·), we again resort to Algorithm 2, whereby the
outer and inner bounds of S∗

UP(k) can be relaxed by computing

GSC(·). Let Ŝouter
UP (k) := {v ∈ N : GSC(v) ≥ k} and

Ŝ inner
UP (k) := {v ∈ N : GSC(v)/

(
log(|Pv|) + 1

) ≥ k + 1}.

We have Souter
UP (k) ⊆ Ŝouter

UP (k) and Ŝ inner
UP (k) ⊆ S inner

UP (k) according
to Proposition 8. The computation of these relaxed bounds
involves O(σ|P |2) time complexity w.r.t. each node in N .
Thus, the overall complexity is O(σ2|P |2).

VII. EVALUATION OF FAILURE LOCALIZATION

CAPABILITY

We demonstrate how the proposed measures of maximum
identifiability index and maximum identifiable set can be
used to evaluate the impact of various parameters, including
topology, number of monitors, and probing mechanisms (CAP,
CSP, UP), on the capability of failure localization. In this
study, the monitor locations are randomly selected under each

set of network parameters. Moreover, we assume shortest path
routing as the default routing protocol under UP, i.e., measure-
ment paths under UP are the shortest paths between monitors,
with ties broken arbitrarily. Note that the maximum identifi-
ability index and the maximum k-identifiable set characterize
the worst-case capability in localizing node failures and are
therefore independent of specific failure locations.

A. Topologies for Evaluation

We first employ random graph models to generate a com-
prehensive set of topologies without artifacts of specific net-
work deployments. We consider random Erdös-Rényi (ER)
graphs [30], generated by independently connecting each pair
of nodes by a link with a fixed probability p. The result is
a purely random topology where all graphs with an equal
number of links are equally likely to be selected (note that
the number of nodes is an input parameter).

We then evaluate real Autonomous System (AS) topolo-
gies collected by the Rocketfuel [31] and the CAIDA [32]
projects, which represents IP-level connections between back-
bone/gateway routers of several ASes from major Internet
Service Providers (ISPs) around the globe.

B. Evaluation Results

We focus on evaluating per-node maximum identifiability
index Ω(v) since it determines both the per-set maximum
identifiability index Ω(S) and the maximum identifiable set
S∗(k). In particular, the complementary cumulative distrib-
ution function (CCDF) of Ω(v) over all v ∈ N (refer to
Table I for notations) coincides with the normalized cardinality
of the maximum identifiable set |S∗(k)|/σ, and thus we
characterize the distribution of Ω(v) by evaluating |S∗(k)|/σ
wrt k. Moreover, we examine the specific value of Ω(v) and
compare it with the degree (i.e., number of neighbors) of v
among monitor/non-monitor nodes to evaluate the correlation
between the maximum identifiability index and the graph-
theoretic property (i.e., degree) of a node. When the exact
values of Ω(v) and |S∗(k)| cannot be evaluated (under CSP
and UP), we evaluate the upper/lower bounds and plot the
zone between the bounds. Under UP, our extensive simulations
under multiple graph models [17] have shown that MSC(v)
can be closely approximated by GSC(v); hence, we use
GSC(v) in place of MSC(v) for computing ΩUP and S∗

UP.
1) Distribution of Ω(v): To characterize the overall distri-

bution of Ω(v), we compute (bounds on)8 S∗
CAP(k), S∗

CSP(k),
and S∗

UP(k) to evaluate |S∗(k)|/σ for different values of k
(σ: total number of non-monitors). Fig. 4 reports averages of
|S∗(k)|/σ computed on ER graphs over multiple randomly-
generated instances of topology and monitor locations, where
|S∗(k)|/σ under CSP and UP is represented by a band with
its width determined by (|Souter(k)|− |S inner(k)|)/σ. The results
show large differences in the failure localization capabili-
ties of different probing mechanisms: When the number of
monitors is small (μ = 2) and k = 2, S∗

UP(k) is almost

8Propositions 19, Corollary 29, and Proposition 22 are used to determine
the exact elements in S∗

CSP(σ), S∗
CSP(σ − 1), and S∗

UP(σ).
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Fig. 4. Maximum k-identifiable set S∗(k) under CAP, CSP, and UP for ER
graphs (|V | = 20, μ = {2, 10}, E[|L|] = 51, 200 graph instances, σ: total
number of non-monitors). (a) μ = 2. (b) μ = 10.

Fig. 5. Maximum k-identifiable set S∗(k) under CAP, CSP, and UP for
Rocketfuel AS1755 (|V | = 172, |L| = 381, μ = {50, 163}, 100 Monte
Carlo runs, σ: total number of non-monitors). (a) μ = 50. (b) μ = 163.

empty, i.e., no (non-monitor) node state can be uniquely
determined by UP when there are multiple failures; in contrast,
|S∗

CSP(k)|/σ ≈ 0.5 and |S∗
CAP(k)|/σ ≈ 1, i.e., CSP can

uniquely determine the states of half of the nodes and CAP
can determine the states of all the nodes when μ = 2 and
k = 2. When the number of monitors increases (μ = 10),
there exist more measurement paths between monitors, and
thus the fraction of identifiable nodes increases for all three
probing mechanisms. In addition, we observe a stable phase
in Fig. 4 where the value of |S∗(k)|/σ remains the same as we
increase k; this is because some non-monitors have monitors
as neighbors, thus directly measurable by these neighboring
monitors without traversing other non-monitors. Specifically,
if there are non-monitors that neighbor at least one monitor
under CAP, neighbor at least two monitors under CSP, or lie
on 2-hop paths between monitors under UP, then the failure
of these non-monitors can always be identified regardless
of the total number of failures in the network, i.e., the
maximum identifiability index of these non-monitors is the
total number of non-monitors. Note that in Fig. 4, the number
of such directly measurable non-monitors is smaller under
UP than under CSP. This is because for non-monitors that
neighbor the same pair of monitors (e.g., m1 and m2),
all these non-monitors are directly measurable on 2-hop m1-
to-m2 paths under CSP; however, only one of these non-
monitors is on a 2-hop m1-to-m2 path under UP as UP probes
only one routing path between each pair of monitors (assuming
stable single-path routing).

We repeat the above evaluation on AS topologies. We select
AS1755 from Rocketfuel topologies [31] and AS26788 from
CAIDA topologies [32], and evaluate the bounds on |S∗(k)|/σ
under multiple instances of random monitor placements; aver-
age results are reported in Fig. 5 and 6. Similar to the case
of random topologies, there are clear differences between

Fig. 6. Maximum k-identifiable set S∗(k) under CAP, CSP, and UP for
CAIDA AS26788 (|V | = 355, |L| = 483, μ = {200, 346}, 100 Monte
Carlo runs, σ: total number of non-monitors). (a) μ = 200. (b) μ = 346.

different probing mechanisms. Unlike the uniformly connected
random topologies in Fig. 4, these AS topologies contain many
sparse subgraphs where the removal of a few nodes can discon-
nect the network. Thus, unless a node is directly measurable
by monitors, it is likely that failures of a few other nodes
will disconnect it from monitors and thus make its failure
undetectable. Comparing results from Rocketfuel and CAIDA,
we observe that the CAIDA AS requires more monitors to
achieve the same level of identifiability. Moreover, deploying
more monitors in CAIDA AS only slightly improves the level
of identifiability. This can be explained by examining the
link density |L|/|V | of the network: |L|/|V | = 1.36 for
the CAIDA AS, whereas |L|/|V | = 2.22 for the Rocketfuel
AS, i.e., CAIDA AS topology is nearly a tree. Therefore,
it is likely for a node to not reside on any paths between
monitors or become unmeasurable after the failure of one other
node in the CAIDA AS, even if the paths are controllable but
cycle-free (CSP).

2) Correlation of Ω(v) and Degree: Next, we examine
specific values of Ω(v) for each non-monitor v ∈ N for
selected instances of network topology and monitor placement,
where Theorems 25 and 26 are employed for computing
the lower/upper bounds under CSP and UP, forming a band
in Fig. 7–9. Our goal is to compare these values with node
degrees to understand the correlation between the proposed
identifiability measure and typical graph-theoretic node prop-
erties. Specifically, we sort non-monitors in a non-increasing
order of Ω(v) under each of the three probing mechanisms,
and compare Ω(v) with the degrees of v among monitors/non-
monitors9; see results in Fig. 7 for random topologies and
in Fig. 8–9 for AS topologies. The results show strong
correlations between Ω(v) and the degree of v, denoted by
d(v). Specifically, denote the number of neighbors of v that
are monitors by dm(v) and the number of neighbors of v that
are non-monitors by dn(v); the overall degree d(v) = dm(v)+
dn(v). If node v has sufficient monitor neighbors (dm(v) ≥ 1
for CAP, dm(v) ≥ 2 for CSP), then v is directly measurable
and thus Ω(v) = σ regardless of the actual degree of v; if node
v does not have a sufficient number of monitors as neighbors,
then Ω(v) ≤d(v) because if all neighbors of v fail, then
the state of v cannot be determined by path measurements.
However, in the latter case, d(v) is only a loose upper bound,
and the exact value of Ω(v) depends on the overall topology,

9Note that node IDs are different under different probing mechanisms due
to the different order of Ω(v) values.
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Fig. 7. Node maximum identifiability index Ω(v) of one ER graph under different probing mechanisms (|V | = 20, μ = 4, E[|L|] = 51). (a) Under CAP.
(b) Under CSP. (c) Under UP.

Fig. 8. Node maximum identifiability index Ω(v) of Rocketfuel AS1755 under different probing mechanisms (|V | = 172, |L| = 381, μ = 70). (a) Under
CAP. (b) Under CSP. (c) Under UP.

Fig. 9. Node maximum identifiability index Ω(v) of CAIDA under different probing mechanisms (|V | = 355, |L| = 483, μ = 296). (a) Under CAP.
(b) Under CSP. (c) Under UP.

the locations of monitors, and the constraints on measurement
paths. In this regard, our result can also be viewed as defining
a new node property (Ω(v)) that takes into account all these
parameters.

Overall, we observe that CAP-type probing is hugely advan-
tageous in uniquely monitoring node states under failures,
especially when there are multiple failures and the network is
sparse. This implies that in the absence of deploying monitors
at every node, implementing controllable probing is an effec-
tive way to uniquely localize node failures. Our observation
also stresses the importance of optimized monitor placement,
especially when we are only interested in monitoring a subset
of nodes, which is left to future work.

VIII. CONCLUSION

We studied the fundamental capability of a network in local-
izing failed nodes from binary measurements (normal/failed)

of paths between monitors. We proposed two novel mea-
sures: maximum identifiability index that quantifies the scale
of uniquely localizable failures wrt a given node set, and
maximum identifiable set that quantifies the scope of unique
localization under a given scale of failures. We showed that
both measures are functions of the maximum identifiability
index per node. We studied these measures for three types
of probing mechanisms that offer different controllability of
probes and complexity of implementation. For each prob-
ing mechanism, we established necessary/sufficient conditions
for unique failure localization based on network topology,
placement of monitors, constraints on measurement paths,
and scale of failures. We further showed that these con-
ditions lead to tight upper/lower bounds on the maximum
identifiability index, as well as inner/outer bounds on the
maximum identifiable set. We showed that both the conditions
and the bounds can be evaluated efficiently using polynomial-
time algorithms. Our evaluations on random and real network
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topologies showed that probing mechanisms that allow moni-
tors to control the routing of probes have significantly better
capability to uniquely localize failures.
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